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Abstract
Asymmetric exclusion processes for particles moving on parallel channels with
inhomogeneous coupling are investigated theoretically. Particles interact with
hard-core exclusion and move in the same direction on both lattices, while
transitions between the channels is allowed at one specific location in the
bulk of the system. An approximate theoretical approach that describes the
dynamics in the vertical link and horizontal lattice segments exactly but neglects
the correlation between the horizontal and vertical transport is developed. It
allows us to calculate stationary phase diagrams, particle currents and densities
for symmetric and asymmetric transitions between the channels. It is shown that
in the case of the symmetric coupling there are three stationary phases, similarly
to the case of single-channel totally asymmetric exclusion processes with local
inhomogeneity. However, the asymmetric coupling between the lattices lead
to a very complex phase diagram with ten stationary-state regimes. Extensive
Monte Carlo computer simulations generally support theoretical predictions,
although simulated stationary-state properties slightly deviate from calculated
in the mean-field approximation, suggesting the importance of correlations in
the system. Dynamic properties and phase diagrams are discussed by analyzing
constraints on the particle currents across the channels.

PACS numbers: 05.70.Ln, 05.60.Cd, 02.50.Ey, 02.70.Uu

1. Introduction

In the absence of a fundamental framework for non-equilibrium systems, one-dimensional
models known as asymmetric simple exclusion processes (ASEP), where particles interact
via an exclusion potential and hop along discrete lattices, have become important tools and
references for understanding complex phenomena in chemistry, physics and biology [1, 2].
ASEPs now are playing a role similar to the one the Ising model has in the studies of
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equilibrium systems [3]. Asymmetric exclusion processes have been applied successfully
to analyze the kinetics of biopolymerization [4], protein synthesis [5–7], molecular transport
through nanopores and channels [8], the motion of motor proteins along cytoskeleton filaments
[9–11], growth of fungal filaments [12] and different aspects of car traffic processes [13, 14].

Many non-equilibrium phenomena can be reasonably well described by a single-channel
exclusion models. However, the necessity to analyze more realistic complex phenomena, that
involve the transport along the parallel-coupled lattices and existence of internal states, e.g.
for motor proteins, vehicular traffic and hopping of quantum dots, stimulated the development
of multi-channel ASEPs [15–21]. In these models particle can move along their lattice and
they also can transfer between the channels leading to complex dynamic behavior. Theoretical
analysis of multi-channel exclusion processes indicates that a coupling between channels has
a strong effect on particle dynamics and stationary-state properties, and it also leads to several
unusual phenomena, such as localized domain walls [20–22].

Dynamics of many non-equilibrium systems is strongly modified by the presence of
inhomogeneities and defects. For example, it is known that in the protein synthesis the
elongation rate of ribosomes is not uniform due to slow codon sites on RNA molecules
[7, 23]. The effect of local inhomogeneities have been already investigated for different ASEPs
on single-chain lattices [6, 24–26]. However, for multi-channel ASEPs mostly homogeneous
systems have been considered. The aim of the present paper is to investigate two-channel
ASEPs with inhomogeneous coupling between the lattices. Specifically, we analyze the
simplest case when two channels are coupled at the single lattice site far away from the
boundaries, and two different cases, symmetric and asymmetric couplings, are considered.
The problem is motivated by the cellular transport of motor proteins that move along parallel
protofilaments along microtubules [27]. Occasionally, motor proteins may jump between
the chains, especially in the presence of structural defects in the original protofilament. In
our study we use a simple approximate model for theoretical calculations of stationary-state
properties and phase diagrams, and we test our predictions by utilizing extensive Monte Carlo
simulations.

The paper is organized as follows. In section 2 we give a detailed description of the model,
briefly present known results for single-chain ASEPs, and develop an approximate theory for
asymmetric exclusion processes involving two channels connected by a single cluster far away
from the boundaries where particles can transfer with symmetric or asymmetric rates between
the lattices. In section 3, we present and discuss Monte Carlo computer simulation results and
compare them with theoretical predictions. Finally, in section 4 we summarize and conclude.

2. Theoretical description of two-channel ASEPs with inhomogeneous coupling

2.1. Model

We consider identical particles that move on two parallel one-dimensional lattices as illustrated
in figure 1. Two channels are identical and they have L + 1 sites. The particles interact via
hard-core exclusion potential: each site is either empty or occupied by a single particle. The
dynamics of the system is random sequential, i.e. at each time step we randomly choose a
site on one lattice to follow its dynamics. All transition rates in the system are defined as
probabilities per unit time step, and this unit time step is set by bulk horizontal transformations.
Particles can enter the system from the left with the rate 0 < α � 1 if any of the first sites in
either lattice are empty. Particles that reach the final site in either lattice can leave the system
with the rate 0 < β � 1. In the bulk of the system particles move from the site i to the site
i + 1 on the same lattice with the rate 1 if the next site is available. However, dynamic rules are
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Figure 1. Schematic view of two-channel ASEP with a coupling at the single site. Particles
move only along the lattices, except on the link site where they can hop to the other lane if the
corresponding site is empty. The inter-channel transition rates are w1 and w2. Allowed transitions
are shown by arrows. Entrance rates at both lattices are equal to α and exit rates are equal to β.

different at the special site L/2 + 1: see figure 1. A particle at this site on the first lattice can
move vertically to the site L/2 + 1 on the second lattice with the rate w1 if the corresponding
site is empty, or it can hop to the right empty site with the rate (1 − w1). However, if the
site L/2 + 1 in the second channel is occupied, the particle jumps in the horizontal direction
to the right with the rate 1 if the forward site is available. The total transition rate out of this
defect site is equal to one. Similarly, the particle on the site L/2 + 1 on the second lattice can
hop vertically with the rate w2 if the upper site is free, or it can move horizontally with the
rate (1 − w2) if the forward right site is not occupied. Otherwise, it will move to the right
neighboring site with the rate 1, assuming again that the forward site is available. When the
transition rates between the channels are equal (w1 = w2) the coupling is symmetric, while
for w1 �= w2 the coupling between the lattices is asymmetric. Both cases of two-channel
ASEPs with inhomogeneous coupling are analyzed separately.

If the inter-channel hopping rates are equal to zero (w1 = w2 = 0) then we have two
independent single-lane ASEPs for which exact solutions for all dynamic properties are already
known [1]. There are three stationary-state phases. For large entrance and exit rates, α > 1/2
and β > 1/2, the single-lane ASEP is found to be in a maximal-current (MC) phase where
the stationary current and bulk density are given by

JMC = 1
4 , ρbulk,MC = 1

2 . (1)

For α < 1/2 and α < β the dynamics is determined by the entrance process and we have a
low-density (LD) phase where the particle current and the bulk density are

JLD = α(1 − α), ρbulk,LD = α. (2)

Finally, for β < 1/2 and β < α the exiting is a rate-limiting process, and the single-chain
ASEP is in a high-density (HD) phase where

JHD = β(1 − β), ρbulk,HD = 1 − β. (3)

Several approximate theoretical approaches have been developed for investigation of
multi-channel ASEPs [15–22]. However, probably the closest description of non-equilibrium
dynamics, as judged by comparison with Monte Carlo computer simulations, is obtained in
the mean-field model that have exact treatment of the vertical transitions between the channels
[16, 20]. We adopt this strategy to analyze the inhomogeneous coupling in two-channel
ASEPs. The dynamics at the coupling cluster can be specified by introducing functions
Pij (i, j = 0, 1) that define the probability that the vertical cluster is empty (P00), partially
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Figure 2. Effective scheme for two-channel ASEPs with inhomogeneous symmetric coupling.
The system consists of four segments coupled by a vertical junction cluster. Each segment is
viewed as a single-chain ASEP. Allowed transitions are shown by arrows.

occupied (P10 or P01 if the occupied site is on the lane 1 or 2, respectively), or fully occupied
(P11). These probabilities are related via a normalization condition

P00 + P10 + P01 + P11 = 1. (4)

In the presented analysis we calculate only bulk densities in all phases, however, our analysis
can be easily applied to obtain full density profiles utilizing known results [1].

2.2. Symmetric coupling

Let us consider the case of the symmetric coupling when the vertical transition rates are
equal. As can be seen from figure 1, the vertical coupling cluster divides the two-channel
inhomogeneous system into four homogeneous horizontal segments. Each of these segments
can be viewed as a single-lane ASEP that are connected with the vertical junction cluster, as
shown in figure 2. We label left segments in the first and second channels as 1 L and 2 L,
respectively. The particles enter these segments with the rate α and leave them with an effective
rate βeff . Similarly, 1R and 2R describe the corresponding right segments with entrance and
exit rates given by αeff and β: see figure 2. Because of the symmetry, the probability to have
the partially filled vertical cluster with the particle on lane 1 or 2 is the same, P10 = P01, which
modifies the normalization condition,

P00 + 2P10 + P11 = 1. (5)

Thus dynamics in four segments and in the vertical cluster is treated exactly, but correlations
between different parts are neglected.

It is instructive to analyze first the simplest case of strong symmetric coupling when
w1 = w2 = 1. It can be shown that it is not possible to have a completely empty vertical
cluster in the large-time limit, i.e. P00 = 0. This follows from the fact that the vertical
configuration 00 can only be obtained from the partially filled cluster by particles leaving
to segments 2L and and 2R. However, the first particle to reach the junction cluster will
hop vertically from one defect site to the other constantly until another particle arrives to
completely fill the cluster. There is no possibility for creating empty vertical cluster. Then
from the normalization condition (5) one obtains,

P10 = 1 − P11

2
. (6)

Because from the vertical cluster particles can leave to the right part of the system only
from the completely filled configuration, the effective rate to enter the segments 1R and 2R
can be easily expressed in terms of the properties of the junction cluster,

αeff = P11. (7)
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The effective exit rates from the left segments can also be found using similar arguments: the
particle can leave the segment 1 L or 2 L to the right if the vertical cluster is in the partially
filled configuration, leading us to the following expression,

βeff = P10 = 1 − P11

2
. (8)

This result has important consequences on the particle dynamics in the system. Since
βeff � 1/2 the maximal-current phase cannot be realized in the left segments. Symmetry
and conservation of the particle current also require that

J1L = J2L = J1R = J2R, (9)

i.e. fluxes through all segments are equal. Using the notation (x, y), where x and y denote the
phase of the left and right segments respectively, we conclude that the only possible stationary
phases for this system are (HD,HD), (LD,HD), (LD,LD) and (HD,LD) phases.

The (HD,HD) phase might exist if the following conditions are satisfied:

β < 1/2, βeff < 1/2, βeff < α, β < αeff . (10)

Because the bulk densities in the left and right segments of this phase are the same, it implies
that

βeff = β. (11)

Then from equations (7) and (8) we derive that

αeff = 1 − 2β. (12)

Substituting this expression into inequalities (10) we obtain, that (HD,HD) phase is realized
when

β < α, β < 1
3 . (13)

Similar arguments for (LD,LD) yield that this phase exists for

α < β, α < 1
3 . (14)

The conditions for existence of (HD,LD) phase can be written in the following form:

αeff < 1/2. βeff < 1/2, αeff < β, βeff < α. (15)

In this phase the stationarity of the particle current requires that αeff = βeff , and utilizing
equations (7) and (8) it produces

αeff = βeff = 1
3 . (16)

Combining this result with equation (15) we obtain that this phase exists only for

α > 1/3, β > 1/3. (17)

It can also be shown that in this mean-field approximation that neglects the correlations
between the segments the (LD,HD) phase correspond to the phase boundary

α = β < 1/3. (18)

In the general case of symmetric coupling between channels, when w1 = w2 = w � 1,
the calculations become slightly more involved because the vertical configuration with both
empty sites now have a nonzero probability, i.e. P00 �= 0. The expressions for the effective
entrance and exit rates are modified as

βeff = 1 − P11 − P10, αeff = P11 + (1 − w)P10. (19)
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As in the case of strong symmetric coupling, the particle fluxes through all segments are the
same, and it is impossible to have a maximal-current phase in the system. If MC would exist
in one of the segments, than it would have to be found in all segments. This would require
that αeff > 1/2 and βeff > 1/2, leading to

αeff + βeff > 1. (20)

However, from equation (19) it follows that

αeff + βeff = 1 − wP10 < 1, (21)

which contradicts the inequality (20). Thus, our mean-field approach suggests that there
are four possible stationary phases ((HD,HD), (LD,LD), (HD,LD) and (LD,HD)) in the two-
channel ASEP with inhomogeneous symmetric coupling.

Let us define functions ρL
1 and ρL

2 as probabilities to find the particle at the last sites of
left segments 1 L and 2 L, respectively. Similarly, ρR

i (i = 1, 2) gives the density at the first
sites of the right segments 2 L and 2R. Because of the symmetry these functions are related,

ρL
1 = ρL

2 = ρL, ρR
1 = ρR

2 = ρR. (22)

The dynamics at the vertical cluster is described at all times by the master equation,

dP11

dt
= ρL(P01 + P10) − 2P11(1 − ρR), (23)

which at steady state reduces to

ρLP10 = P11(1 − ρR). (24)

The particle current that leaves any of the left segments can be written as

J = βeffρ
L, (25)

while the flux entering any of right segments is given by

J = αeff(1 − ρR). (26)

Combining equations (19), (24)–(26), we derive the expression that relates the probabilities
of filled and partially filled vertical junction clusters,

(1 − w)P 2
10 + 2P11P10 + P 2

11 − P11 = 0. (27)

Solving this equation and eliminating the unphysical solution leads us to

P10 =
√

P11[1 − w(1 − P11)] − P11

1 − w
. (28)

Then the effective entrance and exit rates can be expressed using equations (19) as

αeff =
√

P11[1 − w(1 − P11)],

βeff = (1 − w)(1 − P11) − √
P11[1 − w(1 − P11)]

1 − w
.

(29)

Analyzing the conditions for existence of four possible phase with the help of relations
(29), as was done above in the case of the strong coupling (w = 1), it can be shown that
(HD,LD) phase exists for

α >
2 − w

4 − w
, β >

2 − w

4 − w
. (30)

Bulk density profiles and particle currents in this phase are

ρL
bulk = 2

4 − w
, ρR

bulk = 2 − w

4 − w
, J1 = J2 = 2(2 − w)

(4 − w)2
. (31)

6
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(LD,LD) phase is found when

α <
2 − w

4 − w
, α < β, (32)

and stationary-state properties are given by

ρL
bulk = ρR

bulk = α, J1 = J2 = α(1 − α). (33)

Similarly, (HD,HD) phase exists for

β <
2 − w

4 − w
, β < α. (34)

The bulk density and the particle flux in this phase are equal to

ρL
bulk = ρR

bulk = 1 − β, J1 = J2 = β(1 − β). (35)

The phase (LD,HD) is predicted to be found at the line α = β < 2−w
4−w

. However, because
our theory is a mean-field approach, it can be argued that in the real system it does not exist.
At the phase transformation line a linear density profile, characteristic for first-order phase
transitions, is expected [1]. The calculated phase diagram also shown in figure 4. Note that
for w = 0 two channels are uncoupled and we recover the results for individual single-lattice
ASEPs, as expected. In the limit of strong coupling (w = 1) the predicted phase diagram also
agrees with the one discussed earlier.

It is interesting to note that in the case of symmetric coupling the phase diagram for
two-channel ASEPs is very similar to a phase diagram for the single-chain ASEPs with local
inhomogeneity [24]. The connection between two systems can be easily understood from
figure 1. In each lane the hoping rate to the right is the same at all sites except at the one that
couples the channels. Then the motion along each lattice can be viewed as a transport along a
single-lane ASEP with local defect that was studied in [24].

2.3. Asymmetric coupling

The dynamics in the system of two-channel ASEPs with inhomogeneous coupling become
very complex for asymmetric vertical transition rates, i.e. when w1 �= w2, and the symmetry
between two lattices no longer exists. Specifically, the densities at the last sites of the left
segments and densities at the first sites of right segments are not equal: ρL

1 �= ρL
2 and

ρR
1 �= ρR

2 . To specify a state of the system we use the notation (x, y;w, z) with x, y,w and
z corresponding to the phase in the segments 1 L, 1R, 2 L and 2R respectively, and each
of them is able to take the values LD, HD or MC. It is convenient to view the system with
the asymmetric coupling slightly differently from the symmetric case, as shown in figure 3.
Segments 2 L and 1R have L/2 sites while 1 L and 2R segments are longer with L/2 + 1 sites.
However, because we consider dynamics in the thermodynamic limit (L � 1), the difference
in the sizes does not matter and all segments still can be viewed as homogeneous single-chain
ASEP with known stationary properties.

To simplify calculations, we consider the case of maximal asymmetry with w1 = 1 and
w2 = 0. Our calculations can be easily generalized for general values of vertical transition
rates. The particle can enter the segment 1R only when the vertical cluster is fully occupied,
and it produces the following expression for the effective entrance rate,

αeff,1 = P11. (36)

However, as can be seen from figure 3, there are two ways to enter the segment 2R: from the
left segment 2 L and from the partially filled vertical configuration with the probability P10.
Then the effective entrance in this case is equal to

αeff,2 = ρL
2 +

P10

1 − ρR
2

, ρR
2 = P11 + P01. (37)

7
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Figure 4. Phase diagram for two-channel ASEPs with different symmetric inhomogeneous
couplings. Symbols correspond to Monte Carlo simulations, while lines are theoretical predictions.
All phase transformations are first-order transitions with density jumps.

Using similar arguments it can be shown that the effective exit rate from the segment 2 L is
given by the expression,

βeff,1 = 1 − ρR
1 P11

ρL
1

, ρL
1 = P11 + P10, (38)

while the effective rate out of 2 L segment is

βeff,2 = 1 − ρR
2 . (39)

The densities at the last and at the first sites of segments play important role in our
analysis. They can be easily expressed in terms of the entrance and exit rates from known
exact solutions for single-chain ASEPs [1]. In the maximal-current phase the densities are

ρL
1 = 1

4βeff,1
, ρL

2 = 1

4βeff,2
,

ρR
1 = 1 − 1

4αeff,1
, ρR

2 = 1 − 1

4αeff,2
.

(40)

The corresponding expressions for segments in the low-density regimes are equal to

ρL
1 = α(1 − α)

βeff,1
, ρL

2 = α(1 − α)

βeff,2
,

ρR
1 = αeff,1, ρR

2 = αeff,2;
(41)
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while expressions in the high-density regimes can be written as

ρL
1 = 1 − βeff,1, ρL

2 = 1 − βeff,2,

ρR
1 = 1 − β(1 − β)

αeff,1
, ρR

2 = 1 − β(1 − β)

αeff,2
.

(42)

Particle dynamics through vertical junction cluster can be described by a set of three
independent master equations,

dP11

dt
= n11P01 + ρL

2 P10 − (
1 − ρR

1

)
P11 − (1 − n22)P11; (43)

dP10

dt
= (

1 − ρR
1 − n11

)
P11 − n11P01 + n11 − (

1 + n11 + ρL
2

)
P10; (44)

dP01

dt
= (

1 − n22 − ρL
2

)
P11 +

(
1 − ρL

2

)
P10 + ρL

2 − (
1 − n22 + n11 + ρL

2

)
P01; (45)

where n11 denotes the density at the site before the last one in the segment 1 L and n22 is the
occupancy of the second site in the segment 2R: see figure 3. At steady state these equations
change to the following expressions:

n11P01 + ρL
2 P10 = (

1 − ρR
1

)
P11 + (1 − n22)P11; (46)

(
1 − ρR

1 − n11
)
P11 + n11 = n11P01 +

(
1 + n11 + ρL

2

)
P10; (47)

(
1 − n22 − ρL

2

)
P11 +

(
1 − ρL

2

)
P10 + ρL

2 = (
1 − n22 + n11 + ρL

2

)
P01. (48)

At large times the stationarity in the system also implies the following relations between
the particle currents across different segments:

JL
1 + JL

2 = JR
1 + JL

2 , J R
1 = JL

1 − P10, J R
2 = JL

2 + P10. (49)

Since each segment can exist in one of three stationary phases (low-density, high-density or
maximal-current), there are 34 = 81 possible phases in the system. However, not all phases
exist due to constraints of steady-state conditions. MC phase cannot exist in the segment 1R
because from equation (49) we have JR

1 < JL
1 and 1/4 is the maximal possible flux through

any segment. Similarly, it is not possible to have MC phase in the segment 2 L since JL
2 < JR

2 .
These arguments already eliminate 27 + 27 − 9 = 45 phases. It is also not possible to have at
stationary state the phases (HD,LD; x, y) for any x and y. For these phase to exist we must
have from equations (36), (38), (41) and (42)

βeff,1 = 1 − P 2
11

P11 + P10
and βeff,1 = 1 − P11 − P10. (50)

Comparing these two equations leads to the expression P 2
10 + 2P11P10 = 0, which cannot be

satisfied at large times. In analogous way it can be shown that phases (x, y; HD,LD) are not
found at stationary state. Finally, using similar approach we have determined that there are
only 10 phases that can be supported in the system at t → ∞.

The resulting phase diagram is presented in figure 5. Our theoretical calculations show
that (MC,LD;HD,MC) phase can be found for α > 1/2 and β > 1/2; (MC,LD;HD,HD)
exists for α > 1/2 and 0.24 < β < 1/2; (MC,HD;HD,HD) phase is realized for α > 1/2
and 0.22 < β < 0.24; (LD,LD;HD,MC) phase exists for 0.24 < α < 1/2 and β > 1/2;
and (LD,LD;LD,MC) phase can be found for 0.19 < α < 0.24 and β > 1/2. The curved
boundaries between different phases are found by solving the appropriate master equations,

9
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Figure 5. Phase diagram for two-channel ASEPs with asymmetric inhomogeneous coupling
(w1 = 1 and w2 = 0). Symbols correspond to Monte Carlo simulations, while lines are theoretical
predictions. Thick lines describe first-order phase transitions, thin lines represent continuous phase
transformations.

and it yields that the curved border between (LD,LD;LD,LD) and (LD,LD;LD,HD) phases is
given by[

β +
1

2
(M − 1)

] [
(1 − α)α +

1

4
(2α − 1 − 2α2 − 2β + 2β2 + M)2

]

= − 1

4
(M − 1)(3 − 2β2 + M) − α(1 − α)(α − α2 − β + β2)

β − 1
, (51)

where the parameter M is defined as

M =
√

1 − 8α + 8α2 + 4β − 4β2. (52)

The border between the (LD,LD;LD,HD) and (LD,LD;HD,HD) phases is calculated from the
equation

1
2

[
(1 − 2α + M)[(1 − α)α + 1

4 (2α − 2α2 − 2β + 2β2 + M − 1)2
]

= (α − 1)(α2 − α + β − β2) − 1
4 [(M − 1)(1 + 2α2 + 4β − 4β2 + M)]. (53)

The curved boundary between (LD,LD;HD,HD) and (LD,HD;HD,HD) phases is computed
from

(α − 2α3 + α4 + 2αβ2 − 2α2β2 + β4)(1 − 2β + K)

= β(3 + 2α − 2α2 − 2β − K) − (α − α2 − β + β2)(1 + K), (54)

with

K =
√

1 + 4α − 4α2 − 8β + 8β2. (55)

The border between (LD,HD;HD,HD) and (HD,HD;HD,HD) phases is described by

1 + 2α3 + 3β + α2(1 − β + β2) + α(K − 3) = α4 + 3β2 + K. (56)

Particle currents and density profiles in each phase can be found by substituting the appropriate
solutions of master equations into equations (1)–(3).
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3. Monte Carlo simulations and discussion

The presented theoretical description of two-channel ASEPs with inhomogeneous coupling
treats the particle dynamics in horizontal segments and in the vertical junction cluster exactly.
However, coupling between different parts of the system is viewed in a mean-field manner
that neglects correlations. In order to test the validity of the theoretical analysis we performed
extensive Monte Carlo computer simulations.

To speed up computer simulations we utilized the so-called BKL algorithm [28]. The
total number of steps has been varied between 2 × 107 and 109. To ensure that our system
had reached the stationary state we ignored first 3–5% of all steps in each simulation. Our
theoretical results are valid in the thermodynamic limit of L → ∞, indicating that finite-
size effects are neglected. In our simulations we used mostly L = 1000 sites lattices, but
occasionally checked some computations for lattices of sizes L = 100 or L = 100 00.
Computed dynamic properties have been found to be unaffected by lattice size variation,
confirming absence of finite-size effects. Phase diagram boundaries between different phases
have been determined by analyzing density profile and particle currents. In the case where
we have transitions between LD and HD phases it is possible to visually observe the phase
boundary: it happens when the density profile becomes linear. This method allowed us to
determine the phase boundaries within 0.01 units of the numerical values assigned to α and
β. In the case of transitions between an MC phase and LD/HD phases, phase borders have
been determined by observing the saturation of the particle current for specific α and β values.
This approach, although not as exact as the previous one, still allows us to compute the phase
transition line to within 0.05 units of the α and β values.

Phase diagram for two-channel ASEPs with inhomogeneous symmetric coupling,
obtained from Monte Carlo simulations is presented in figure 4, and it can be concluded that
the approximate theoretical approach agrees well with computer simulations. The agreement
is excellent for weak coupling between the channels (w � 1), while increasing the probability
of vertical transitions (w � 1) leads to stronger correlations in the system, and theoretical
predictions start to deviate from Monte Carlo simulations. More information can be obtained
from density profiles plotted in figure 6. Our theory gives excellent agreement for bulk densities
in (HD,HD) and (LD,LD) phases for any coupling between the channels: see figures 6(a) and
6(b). This is because the dynamics of the system in these cases is governed by entrance or exit
processes. However, in (HD,LD) phase the theoretical predictions only qualitatively agree
with computer simulations, as can be seen in figure 6(c). This observation can be explained
by the fact that in this phase the dynamics is governed by processes near the vertical junction
cluster, and our theory neglects correlations between different segments of the system.

Stationary-state phase behavior in two-channel ASEPs with inhomogeneous asymmetric
coupling is much more complex, as shown in figure 5. Monte Carlo computer simulations
suggest that there are 10 stationary phases, in agreement with theoretical predictions.
Theoretical calculations for phase boundaries mostly agree with computer simulations,
although there are deviations for small α and/or small β. Density profiles of six phases for
asymmetric coupling are presented in figure 7. The agreement between theoretical calculations
and computer simulations is excellent in the phases where dynamic properties depend on the
entrance and exit rates: see figures 7(c)–(e). However, deviations between the theory and
Monte Carlo simulations are observed in the phases where dynamics is specified by the
processes near the vertical junction cluster. Although our theoretical calculations and Monte
Carlo computer simulations have been performed for the case of strong asymmetry (w1 = 1
and w2 = 0), they can be easily extended for other asymmetric transition rates, and we expect
a similar phase diagram and stationary densities and particle currents.
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Figure 6. Density profiles for two-channel ASEPs with symmetric inhomogeneous couplings:
(a) (LD,LD) phase with w = 1, α = 0.25 and β = 0.75; (b) (HD,HD) phase with
w = 0.5, α = 0.75 and β = 0.25; (c) (HD,LD) phase with w = 0.9 and α = β = 0.75.
Symbols correspond to Monte Carlo simulations, while lines are theoretical predictions for bulk
densities.

Our theoretical calculations, supported by Monte Carlo computer simulations, indicate
that for symmetric coupling between the channels the phase diagram is quite simple with
only three phases. However, breaking this symmetry leads to a very complex dynamics with
10 stationary-state phases. This behavior can be understood by analyzing particle fluxes
through segments. In the symmetric coupling the currents in all segments are the same. In
addition, it was shown that the maximal-current phase cannot exist under these conditions.
These constraints lead to a simple phase diagram as outlined in the figure 4. In contrast,
for the asymmetric coupling between the channels the currents through all segments are not
necessarily equal to each other, and MC phase can be found under some conditions in some
segments. This leads to existence of many steady-state phases in the system.

The phase diagram for the asymmetric inhomogeneous coupling is almost symmetric with
respect to α ↔ β transformation. This is because the transport of particles from the left can
be also viewed as a motion of holes in the opposite direction. However, as can be clearly
seen from figure 5 there is a slight asymmetry in the phase diagram, and it also shows up
in the dynamic properties. The deviation from the particle-hole symmetry can be explained
by analyzing the dynamics at the vertical junction for the case of w1 = 1 and w2 = 0, as
illustrated in figure 8. The particle at the partially filled junction cluster can only move in
the vertical direction. At the same time, the hole in the partially filled cluster can move
vertically and horizontally, if the particle from the 1 L segments enters the cluster. Thus, the
corresponding dynamic rules for the particles and for the holes in the vertical cluster are not
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Figure 7. Density profiles for two-channel ASEPs with asymmetric inhomogeneous couplings
(w1 = 1 and w2 = 0): (a) (MC,LD; HD,MC) phase with α = β = 0.75; (b) (LD,LD; HD,MC)
phase with α = 0.4 and β = 0.75; (c) (LD,LD; LD,MC) phase with α = 0.23 and β = 0.75;
(d) (LD,LD; LD,LD) phase with α = 0.1 and β = 0.75; (e) (LD,LD; LD,HD) phase with α = 0.2
and β = 0.35; (f ) (LD,LD; HD,HD) phase with α = β = 0.4. Symbols correspond to Monte
Carlo simulations, while lines are theoretical predictions for bulk densities.

the same, and it produces the slight asymmetry in large-time properties of two-channel ASEPs
with inhomogeneous asymmetric coupling.

It is also interesting to consider the effect of inhomogeneous coupling on particle fluxes
through the system. To illustrate it we consider the case of two-channel ASEPs with symmetric
coupling. Because in (LD,LD) and (HD,HD) phases dynamics is determined by entrance or
exit processes, in these phases the particle flux is independent of the strength of inhomogeneous
coupling. The dependence can only be observed in (HD,LD) phase. The particle current in
this phase is presented in figure 9. The increase in the inter-channel transition rate lowers
the current, although the effect is relatively small. This result first seems counterintuitive
because one might think naively that introducing an additional channel for particles should
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lane 1

lane 2

Figure 8. Dynamic transitions for the particle (on the left) and for the hole (on the right) at the
vertical cluster. Allowed transitions are shown by arrows.
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Figure 9. The particle current across each channel for two-channel ASEPs with symmetric
inhomogeneous coupling as a function of inter-channel transition rate w. The parameters are
α = β = 0.75. Solid lines describe theoretical predictions, and symbols are from Monte Carlo
simulations.

increase the flux. However, it can be understood using the following arguments. Without
inhomogeneous coupling (w = 0) the system is found in the maximal-current phase, while
opening the channel that connects lattices destroys this phase leading to (HD,LD) phase. Then
the particle flux through the system decreases because it cannot sustain the maximal current
of J = 1/4. Increasing the inter-channel rate w lowers the effective entrance and exit rates in
the segments of two-channel ASEPs, thus further decreasing the particle current.

4. Summary and conclusions

Two-channel asymmetric simple exclusion processes with inhomogeneous coupling between
the lattices have been investigated. To better describe the large-time behavior of the system a
mean-field approach, that treats particle dynamics in four lattice segments and in the vertical
cluster exactly while neglecting the correlations between different parts of the system, is
developed. For symmetric transition rates between the channels the phase diagram is rather
simple and it consists of three phases. This is a consequence of constraints on the particle
fluxes due to the symmetry. The situation is very different for asymmetric coupling between
the channels. Here our analysis indicates that there are ten stationary phases. It is argued that
this complex behavior is realized because of weaker constraints on the particle currents. Our
theoretical calculations are supported by extensive Monte Carlo computer simulations. Slight
deviations between theoretical results and computer simulations are only found in the phases
where correlations around the junction site play important role. Our theoretical calculations
and computer simulations also point out to asymmetry in the properties of two-channel ASEPs
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with asymmetric coupling with the respect to the particle-hole symmetry. It is argued that this
asymmetry appears due to different dynamic rules for the particles and for the holes at the
vertical junction cluster.

There are several extensions of this work that can be proposed. Two-channel ASEPs
with homogeneous asymmetric coupling show a phase diagram with only seven phases and
very different stationary properties [22]. It will be interesting to increase the region of
inhomogeneous coupling from one site to many to see how dynamics of the system changes.
Another interesting question that will help to understand mechanisms of asymmetric exclusion
processes is how far coupling clusters should be put in order to feel each other. In addition,
the analysis can be extended to transport of extended particles [7].
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